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Abstract

Since cancer is one of the top causes of death,
researchers have been working hard for cancer
management. Creating drugs that can be utilized for
both early detection and efficient treatment, is one of
the most challenging parts of cancer treatment.
Traditional cancer treatment is linked with a high risk
of serious chemotherapeutic side effects and
occasionally lacks precise technology for early tumour
identification. It was thought that a medication that
could serve as a "magic bullet* and could only
recognize cancer cells, was required for better
therapeutic ratio, defined as the distinction between
how treatment impacts cancer cells against healthy
tissues.

Nanoparticle systems provide numerous potentially
efficient approaches for developing customized cancer
detection and treatment medications. There are two
methods for targeting nanoparticles: passive targeting
and active targeting. Nanoparticles can be effectively
localized inside the tumour microenvironment with
passive targeting. Due to their active targeting,
nanoparticles can be actively taken up by tumour cells.
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Introduction

Major attempts have been undertaken to enhance the results
of cancer management because cancer remains the leading
cause of death in people?l. Despite their high efficacy in
killing cancer cells, chemotherapeutics lack precision,
resulting in drug-induced harm to non-cancer tissues.
Patients who are exposed to nonspecific harmful compounds
in treatment paradigms frequently develop significant side
effects, which can be life-threatening®. At the beginning of
the 20th century, Paul Ehrlich introduced the idea of the
"magic bullet" into medicine, at least in theory®*. Since then,
researchers from all around the world have been looking for
a "magic bullet" that might target cancer cells with extreme
precision, facilitating diagnosis and therapy.

Recent developments in cancer nanotechnology have
created new avenues for this outstanding platform by a
growing class of nanotherapeutics that can directly target
cancer cells, providing a significant advantage over
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conventional therapies®. Both passive and active targeting
strategies can be used to target nanoparticles.

Targeting using antibodies

Antibodies are a well-known family of target-specific
reagents in nuclear medicine that are utilized for diagnostic
and therapeutic uses. Antibodies, which were based on
antigens found on their surfaces, were the first molecules
used to target nano vehicles to certain cell types®. Since
antibodies have two epitope binding sites on a single
molecule, they are extremely selective and have a high
binding affinity as targeted therapeutics®’. It took twenty
years for scientists to take into account the possible use of
monoclonal antibodies (mAbs) in cancer therapy, even
though the first mAb capable of attaching to a specific tumor
antigen was created in 1975. Mouse monoclonal antibody
Muromonab CD3 (OrthoClone OKT3) was the first mAb to
be granted a clinical use license by the FDAS3.

There are already many FDA-approved mAb treatments
available and hundreds more are in active trials*. The
transferrin receptor (TfR), human epidermal growth factor
receptor 2 (HER2), epidermal growth factor receptor
(EGFR) and prostate-specific membrane antigen (PSMA)
are potential targets for mAb-mediated nanoparticle
propagation.

Human epidermal growth factor receptor 2 (HER2
receptor): HER2 is only mildly expressed in healthy adult
tissues®, but it is overexpressed in about 25% of invasive
breast tumors?®, Trastuzumab, a humanized monoclonal
antibody that targets the HER2 receptor, is now a standard
therapy for HER2-positive breast cancer. Due to HER2's
high expression on tumor cells, accessibility outside of cells
and propensity to internalize following antibody contact, it
has been proposed that HER2 should be a target for
customized nanoparticle transport to breast cancer.
Trastuzumab-conjugated nanoparticles have successfully
been shown to target HER2 positive cells in both in vitro and
in vivo studies 4.

Due to its propensity to target just HER2-positive breast
cancer cells, this antibody has been utilized to improve
radiological identification of breast cancer. Despite the fact
that mammography has improved breast cancer early
detection, it still misses 10-25% of tumors and is nonspecific
for malignancy®. As a result, a tumor-specific imaging
probe capable of producing a detectable imaging signal from
a preclinical malignant tumor would be advantageous. To
detect HER2-positive tumors, trastuzumab has been coupled
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with super magnetic iron oxide nanoparticles that can be
utilized as MRI contrast agents®®. Tumors that overexpress
HER2 receptors had higher signal intensities, which
improved cancer detection®®,

Magnetic relaxometry is more accurate than magnetic
resonance imaging (MRI) because it exclusively identifies
target-bound nanoparticles, even though both techniques can
identify and locate targeted magnetic nanoparticles.
Hathaway et al?> employed magnetic relaxometry to find
HER2-targeted super magnetic iron oxide nanoparticles.
These findings suggest that trastuzumab-conjugated
magnetic nanoparticles could be valuable diagnostic tools
for breast cancer early detection. Trastuzumab's capacity to
target nanoparticles for imaging has also been investigated.

Epidermal growth factor receptor (EGFR): The ErbB
receptor family member epidermal growth factor receptor,
which is expressed by normal human cells, has been linked
to malignancy in a number of epithelial malignancies. EGFR
is a possible target for anticancer therapy because
cetuximab, a human-murine chimeric monoclonal antibody,
binds to it with high affinity and competitiveness?. In vitro
testing with cetuximab has shown that it can successfully
and selectively target gold nanoparticles to EGFR-positive
pancreatic and colorectal cancer cell lines®. The cancerous
cells were thermally abated as a result of the heat that the
gold nanoparticles produced after being exposed to
nonionizing radiofrequency energy.

Cetuximab-targeted gold nanoparticles were studied by
Glazer et al*® in a pancreatic cancer xenograft mouse model.
After administering cetuximab-conjugated gold
nanoparticles intraperitoneally, tumor xenografts were
exposed to radiofrequency, which caused radiofrequency
field-induced death of pancreatic cancer xenografts without
causing damage to healthy organs. Using an orthotopic
pancreatic cancer model, Patra et al®” evaluated the effects
of gold cetuximab-decorated nanoparticles on pancreatic
cancer cells that expressed various amounts of EGFR in vitro
and in vivo. These particles carried the anticancer drug
gemcitabine, which was their payload. This resulted in a
significant in vitro and in vivo inhibition of pancreatic cancer
cell growth in cells overexpressing EGFR.

It has been investigated whether cetuximab can target gold
nanoparticles for medicinal as well as cancer detection
purposes. When compared to nontargeted gold nanorods,
topical injection of gold nanorods precisely targeted to
EGFR results in significantly greater image contrast for a
skin surface-producing cancer, according to Puvanakrishnan
et al®. These results show that near-infrared narrow-band
imaging can be used to assess and demarcate tumor borders
during surgical excision following topical injection of gold
nanorods.

When recognizing EGFR-positive A431 cells, EGFR-
targeted nanoprobes demonstrated 54 times more specificity
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and sensitivity than EGFR-deficient MCF7 cells. A new
class of smart theragnostic gold nanoparticles that take
advantage of the imaging and photothermal capabilities of
gold nanoparticles was disclosed by Choi et al in 2012, It
has been demonstrated that MRI contrast agents,
superparamagnetic iron oxide nanoparticles effectively
target cells overexpressing EGFR. Chen et al’ suggested
using MRI imaging of cetuximab-conjugated iron oxide
nanoparticles to identify the clinical target volume for
radiation treatment and to make a preliminary diagnosis of
nasopharyngeal cancer.

According to Kaluzova et al?®, cetuximab-conjugated iron
oxide nanoparticles can increase MRI contrast and make
glioblastoma cell lines more radiosensitive in both in vitro
and in vivo malignancies. To deliver doxorubicin and
superparamagnetic iron oxide to tumor cells that overexpress
the EGFR, Liao et al®® suggested using cetuximab immune
micelles. The use of magneto-fluorescent silica
nanoparticles attached to cetuximab for in vivo imaging
techniques to identify EGFR-positive colon cancer was
demonstrated by Cho et al®©.

mAbs against EGFR have also been utilized to target the
delivery of chemotherapy nanoparticles to cancer cells?®.
These targeted nanocarrier systems could be effective in the
treatment of cancers that overexpress EGFR, according to
the findings. Cetuximab immune liposomes, according to
Chen and colleagues®, could be employed as a cancer
treatment. With a specific goal in mind, a boron delivery
vehicle was created. When compared to nontargeted therapy,
cetuximab immune liposomes resulted in an eightfold
increase in cellular absorption of boron in EGFR-positive
glioma cells.

Transferrin receptor (TfR): Given that malignant cells
express it at levels several times greater than normal cells,
the transferrin receptor is particularly crucial in the creation
of nanotherapeutics®. In the capillary endothelial cells of the
brain, TfR is also present?. The blood-brain barrier can be a
barrier to the delivery of chemotherapy drugs, hence the
transferrin receptor is a potential target for chemotherapeutic
drug delivery to malignancies outside the blood-brain
barrier!.

Prostate-specific membrane antigen (PSMA): A tumor
antigen called prostate-specific membrane antigen has been
found in the neo-vasculature of the majority of solid tumors
other than those of the prostate?®. Sun*® developed
nanoconjugates based on dendrimers that are PSMA-
targeted as a platform for specific drug delivery to PSMA-
expressing cells. Serda et al*> examined the anti-PSMA
antibody J591 in vitro for improving T (1)-weighted MR
imaging by targeting LNCaP prostate cancer cells with
superparamagnetic iron oxide nanoparticles.

CD20: A novel cancer treatment strategy has been
demonstrated to preferentially target lymphoma cells that
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overexpress CD20 by combining anti-CD20 monoclonal. In
a work by Minai et al®?, anti-CD20 mAb-based drug
rituximab was combined with gold nanospheres in vitro to
transport and release the medication in response to
femtosecond laser pulses. The anti-CD20 molecules that
were produced, kept their ability to cause complement-
dependent cytotoxicity as well as their functionality.

Antibody fragments used for nano construct targeting

It became possible to design and prepare antibody fragments
with the advancement of modern antibody technology®?. The
two types of antibody fragments that are most frequently
researched for nanoparticle targeting are antigen-binding
fragments (Fab) and single-chain variable fragments
(scFV)3, This method makes it possible to couple numerous
targeting peptides to a single nano construct, increasing the
targeting efficiency and specificity. This is made possible by
the small size of the nanoparticles and antibody fragments.

Each heavy and light chain in the Fab fragments has one
constant and one variable domain. Antibody fragments have
the same binding selectivity as the whole antibody, but they
are nonimmunogenic due to the absence of the Fc fragment's
constant domains 2 and 3. As a result, using antibody
fragments as a targeting moiety lowers construct uptake by
the RES in comparison to entire mAbs and enhances the
pharmacokinetic profile of Fab and scFV, as well as nano
constructs incorporating them!®. Antibody fragments are
much smaller than monoclonal antibodies (mAbs) which
have a molecular weight of about 150 kDa. Antigen-binding
fragments have a size of around 50 kDa, whereas scFv have
a size of around 25 kDa, which allows for improved
penetration into solid tumors®*.

Single-chain variable fragments (scFV): Single-chain
antibodies against the prostate stem cell antigen were
employed by Ling et al®! to target the theragnostic polymer
nanoparticles containing docetaxel and superparamagnetic
iron oxide nanocrystals. In addition to real-time monitoring
of the therapeutic effect, these nano constructs were used for
concurrent imaging and pharmaceutical delivery. Docetaxel,
poly  (d,l-lactic-coglycolic acid) and hydrophobic
superparamagnetic iron oxide nanocrystals made up the core
of the core-shell theragnostic nanoparticles used by Li et al?°.
The shell was composed of two different-sized polyethylene
glycol (PEG) molecules and a multilayer of poly allylamine
hydrochloride. To specifically transport these core-shell
theragnostic nanoparticles to PC3M cells, single-chain
antibodies against the prostate stem cell antigen were
combined with them®®; this method is known as targeted
delivery.

Antigen-binding fragments (Fab): A number of liposomal
nanoparticles containing therapeutic cargo have been
targeted using the antigen-binding domains of mAbs in
addition to scFV. Doxorubicin-loaded, sterically stabilised
liposomes*, have been linked to a monoclonal antibody that
is specific for the human betal integrin. Since several betal
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integrins have been found on the surface of human non-small
cell lung carcinomas, liposomal nano-conjugates that target
them showed tumor-specific binding, efficient incorporation
and a significant increase in cytotoxicity when compared
with doxorubicin that was not targeted.

Similar to this, doxorubicin-loaded immunoliposomes
carrying a Fab of the mAb anti-GD(2), an antibody that
targets disialoganglioside, were made using the same
technique®. These tailored nanoconjugates prevented the
growth of cancer cell metastatic spread in all evaluated
organs during a metastatic paradigm of human
neuroblastoma in nude mice. Drug-loaded immune
liposomes were tested in vivo and in vitro against mAb anti-
CD19 or its Fab portions in an animal model of human B cell
lymphoma?®,

Antigen-binding fragments were just as successful at
delivering the drug vincristine as mAbs, but they had better
therapeutic results for the drug doxorubicin. Even though it
was more effective than anti-CD19-targeted liposomal
doxorubicin, the longer Fab circulation durations were what
led to the greater therapeutic efficacy of doxorubicin-loaded
immune liposomes. Fab segments from a humanized anti-
HER2 mAb were used to target PLGA nanoparticles that
were loaded with the PE3BKDEL gene. These tailored
nanoconjugates have been demonstrated to be more
cytotoxic in vitro towards breast cancer cell types that
overexpress the HER2 gene. These nanoconjugates
demonstrated increased therapeutic efficiency in inhibiting
tumor growth in a HER2-overexpressing cancer xenograft
model when compared to nontargeted controls*..

Aptamer-based targeting

Since they are twisted into secondary and tertiary three-
dimensional structures, aptamers that are single-stranded
DNA or RNA oligonucleotides that have the potential to
attach to certain biological targets, most typically proteins.
Due to their exceptional efficiency as targeting agents,
aptamers are sometimes compared to antibodies®.
"Systemic evolution of ligands by exponential enrichment"
(SELEX)?®, an iterative in vitro selection process, is used to
build aptamers that are selective for a certain target.

Estevez et al'” coupled aptamers that detect acute leukaemia
cells (CCRF-CEM cells) with the system using a dual-
nanoparticle system made up of magnetic nanoparticles and
fluorescent silica nanoparticles. The preciseness of the
detection was confirmed using confocal microscopy and this
technology allowed for the identification of as few as 250
cancerous cells.

According to a report, the surface of gold-silver nanorods
may covalently bind up to 80 molecules of sgc8c aptamer?.
It was discovered that the sgc8c aptamer-nanorods had a 26-
fold higher affinity for the tyrosine kinase-7 PTKY7
transmembrane protein on CCFR-CEM cells than did the
sgc8c aptamer without the use of nanoparticles.
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According to flow cytometry, CCFR-CEM cells tagged with
unconjugated  fluorescein-labeled aptamer had a
fluorescence intensity signal that was 300 times higher than
that of cells labelled with aptamer-nanorods?*. Taghdisi et
al* targeted single-walled carbon nanotubes with the same
aptamer to achieve pH-dependent daunorubicin release. A
similar method was applied by Xing et al®® to get pH-
dependent doxorubicin release from porous hollow
magnetite nanoparticles.

Compared to conventional targeted delivery agents like
antibodies, aptamers have a number of potential advantages.
A good place to start is the fact that aptamers are produced
chemically rather than biologically, making them economic
to produce and less variable from batch to batch®l.
Additionally, the choice of a broad spectrum of targets
including dangerous and nonimmunogenic substances, is
made possible by in vitro aptamer production. Aptamers are
much more resistant to biological degradation and physical
stresses like heat, pH and chemical solvents than
antibodies*®. These characteristics of aptamers enable them
to withstand the challenging circumstances encountered
during nanoparticle production. Aptamers are stable for
long-term storage and can be delivered at room temperature
following synthesis®.

Additionally, aptamers degrade slowly and can be repeatedly
denatured and renatured without losing their activity®3.
Depending on their backbone, aptamers with functional
groups can be modified chemically to yield numerous
common synthetic chemistry approaches. A lack of
immunogenicity, which can result in higher biodistribution,
is an additional benefit of aptamers over antibodies. Finally,
although the differences are less obvious when aptamers are
compared to antibody fragments®, aptamers can penetrate
solid tumors more deeply than antibodies (10 nm and 155
kDa) due to their smaller size (1-2 nm).

Conclusion

The use of receptors to actively target nanoparticles for
distribution holds a lot of promise. For early tumor
identification, treatment and even post-treatment
monitoring, tumor-targeted nano vehicles are utilized.
Additionally, active targeting has made it possible to get
through certain obstacles such as the blood-brain barrier and
cancer multidrug resistance.

Some of the most significant active targeting techniques that
have been researched to date are covered in the current work.
In monoclonal antibody-based targeting, whole antibody
fragments with exceptional selectivity and binding affinity
to their target receptors are employed. However, when used
in vivo, they did show substantial immunogenicity, which
prompted the use of antibody-based fragments like scFv and
Fab fragments. These methods are not very immunogenic,
which leads to a decrease in RES absorption of nano vehicles
and an increase in NP bioavailability. Although aptamers are
chemically produced, they are highly durable in vivo despite
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the fact that they are also nonimmunogenic. Additionally, a
wide variety of substances, such as poisonous or
immunogenic ones, can be developed to serve as their
targets. Finally, ligands like transferrin and folic acid have
been used to target transferrin receptors and FR- which are
overexpressed not just on cancer cells but also on metastatic
and drug-resistant malignant cells. Even though some of
them have been used in clinical settings, the ideal targeting
strategy has not yet been identified. Each offers a unique set
of benefits and drawbacks. Perhaps a mix of strategies can
be employed to increase the accuracy of medication
distribution, enabling more effective customized therapy.
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